Regularized Dirac delta functions for phase field models
نویسندگان
چکیده
The phase field model is a highly successful computational technique for capturing the evolution and topological change of complex interfaces. The main computational advantage of phase field models is that an explicit tracking of the interface is unnecessary. The regularized Dirac delta function is an important ingredient in many interfacial problems that phase field models have been applied. The delta function can be used to postprocess the phase field solution and represent the surface tension force. In this paper, we present and compare various types of delta functions for phase field models. In particular, we analytically show which type of delta function works relatively well regardless of whether an interfacial phase transition is compressed or stretched. Numerical experiments are presented to show the performance of each delta function. Numerical results indicate that (1) all of the considered delta functions have good performances when the phase field is locally equilibrated; and (2) a delta function, which is the absolute value of the gradient of the phase field, is the best in most of the numerical experiments. Copyright © 2012 John Wiley & Sons, Ltd.
منابع مشابه
Multipole Vortex Blobs (MVB): Symplectic Geometry and Dynamics
Vortex blob methods are typically characterized by a regularization length scale, below which the dynamics are trivial for isolated blobs. In this article, we observe that the dynamics need not be trivial if one is willing to consider distributional derivatives of Dirac delta functionals as valid vorticity distributions. More specifically, a new singular vortex theory is presented for regulariz...
متن کاملFinite Element Quadrature of Regularized Discontinuous and Singular Level Set Functions in 3D Problems
Regularized Heaviside and Dirac delta function are used in several fields of computational physics and mechanics. Hence the issue of the quadrature of integrals of discontinuous and singular functions arises. In order to avoid ad-hoc quadrature procedures, regularization of the discontinuous and the singular fields is often carried out. In particular, weight functions of the signed distance wit...
متن کاملOrdinary Differential Equations with Delta Function Terms
This article is devoted to nonlinear ordinary differential equations with additive or multiplicative terms consisting of Dirac delta functions or derivatives thereof. Regularizing the delta function terms produces a family of smooth solutions. Conditions on the nonlinear terms, relating to the order of the derivatives of the delta function part, are established so that the regularized solutions...
متن کاملDiscretization of Dirac delta functions in level set methods
Discretization of singular functions is an important component in many problems to which level set methods have been applied. We present two methods for constructing consistent approximations to Dirac delta measures concentrated on piecewise smooth curves or surfaces. Both methods are designed to be convenient for level set simulations and are introduced to replace the commonly used but inconsi...
متن کاملLattice Discretization in Quantum Scattering
The utility of lattice discretization technique is demonstrated for solving nonrelativistic quantum scattering problems and specially for the treatment of ultraviolet divergences in these problems with some potentials singular at the origin in two and three space dimensions. This shows that lattice discretization technique could be a useful tool for the numerical soiution of scattering problems...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012